

BLDC-Technology

WE GET IDEAS MOVING

The spirit of innovation and a sense of For a quarter of a century, we have ideas beyond the familiar has made us into a pioneering company over more than 185 years.

been offering customized drive solutions for office and workplace workstations, as well as for shading systems and building technology.

Through our tradition of innovation, we have succeeded in establishing ourselves as a specialist and problem-solver in numerous areas.

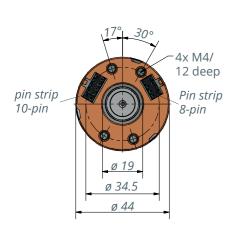
THE RIGHT PRODUCT FOR **EACH APPLICATION**

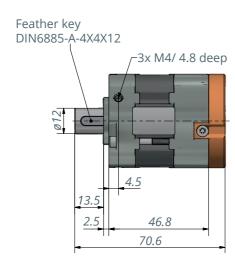
```
BLDC-Motors Page 04 3200 - t-Rex- I-44-47-L21S2
                     Page 06 3200 – t-Rex- I-44-47-L41S2
                     Page 08 3200 – t-Rex- I-44-89-L41S2
                     Page 10 3200 – t-Rex- I-44-89-L12S2
                     Page 12 3206 – t-Rex- I-65-51-L36S2
                     Page 14 3206 – t-Rex- I-65-86-L36S2
                     Page 16 3207 – i-Rex-A-130-70
                     Page 18 3213.00-1XXX - i-Wheel
                     Page 20 3213.00-2XXX - i-Wheel
                     Page 22 3213.00-3XXX – i-Wheel
                     Page 24 3213.00-21XX - i-Wheel C
                     Page 26 Ket-Rob - platform for AGV/AGC
```

www.ketterer.de

t-Rex 3200 (short version, focus rotational speed)

I-44-47-L21 S2


Description


14-pole BLDC motor with high-performance neodymium magnets and three digital Hall sensors to detect the rotor position. The electrical connections are designed as a plug-in system. Additional power electronics are required to operate the motor. Motor design with a hollow shaft is also available upon request. This allows the cables to run through the motor or the implementation of output on both sides.

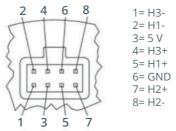

Special features

- Designed with focus on rotational speed
- Enormous performance density 3 times stronger than motors of comparable size
- High overload resistance
- Ideally suited as direct drive, or generator for gearless applications
- Special winding upon request
- Design and manufacture of motor to specified operating point is possible

3200.00-3002 with shaft

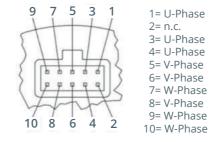
Digital Hall-sensors

Supply of sensors


Voltage range: 4.5 to 5.5 V DC Optional: voltage regulator for 5 V Input current: < 70 mA

Output signals of sensors

Differential output (RS422 standard, datasheet AM26 C31-TI) Typical voltage range: 0.2/3.4 V @ 20 mA Output current: max. 20 mA


Signal structure: The Hall sensors have a 120° phase shift to each other Due to the 14-pole design the **Signal frequency** is seven times higher than the speed

Hall-sensors

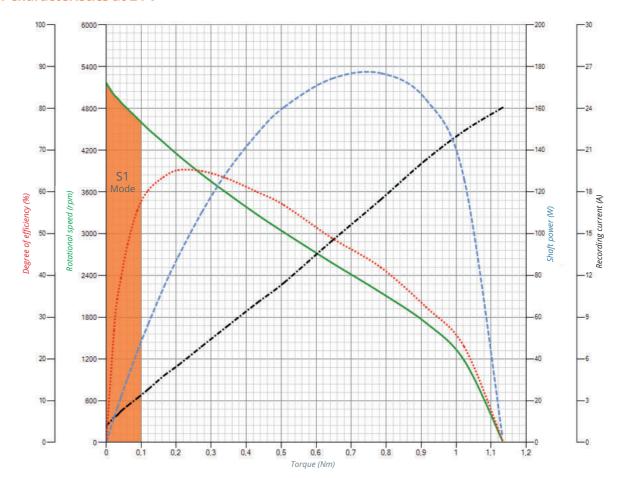
Socket strip RM 2.54 / 8 PIN

Motor phases

n.c.= please do not connect RM 2.54 / 10 PIN W+P 3491-10

t-Rex 3200-I-44-47 L21 S2 DH	3200.0	00-3002
Rated voltage	24 VDC	36 VDC
Rated current	3.4 A	2.4 A
Rated torque	0.1 Nm	0.05 Nm
Rated speed	4600 rpm	7400 rpm
Shaft power (output)	48 W	38 W
Max. efficiency	65 %	71 %
Idle speed	5168 rpm	7778 rpm
No-load current	1.2 A	1.3 A
Stall torque	1.1 Nm	0.9 Nm
Starting current at idle speed	24 A	18 A
Torque constant	0.047 Nm/A	0.05 Nm/A
Speed constant	215 rpm/V	216 rpm/V

Motor parameters


0.29 Ohm	
171 mH	
9.5 kg* mm²	
14	
Star	
2	
2 Series	
bidirectional	
	171 mH 9.5 kg* mm² 14 Star 2 2 Series

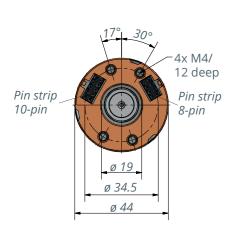
Note: Max. ambient temperature = 40 °C, controller-specific At the nominal point (TU = 20°C), controller-specific

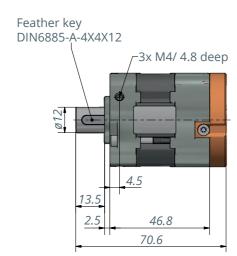
Motor characteristics at 24 V

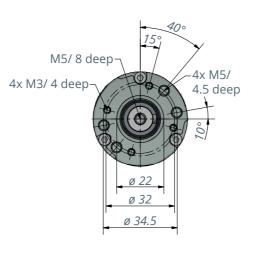
Item number: 3200.53-05

t-Rex 3200 (short version, focus torque)

I-44-47-L41 S2


Description


14-pole BLDC motor with high-performance neodymium magnets and three digital Hall sensors to detect the rotor position. The electrical connections are designed as a plug-in system. Additional power electronics are required to operate the motor. Motor design with a hollow shaft is also available upon request. This allows the cables to run through the motor or the implementation of output on both sides.

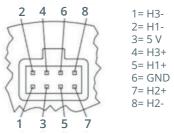

Special features

- Designed with focus on torque
- Enormous performance density 3 times stronger than motors of comparable size
- High overload resistance
- Ideally suited as direct drive, or generator for gearless applications
- Special winding upon request
- Design and manufacture of motor to specified operating point is possible

3200.00-3000 with shaft

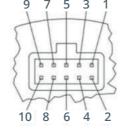
Digital Hall-sensors

Supply of sensors


Voltage range: 4.5 to 5.5 V DC Optional: voltage regulator for 5 V Input current: < 70 mA

Output signals of sensors

Differential output (RS422 standard, datasheet AM26 C31-Tl) **Typical voltage range:** 0.2/ 3.4 V @ 20 mA Output current: max. 20 mA


Signal structure: The Hall sensors have a 120° phase shift to each other Due to the 14-pole design the Signal frequency is seven times higher than the speed

Hall-sensors

Socket strip RM 2.54 / 8 PIN W+P 3491-08

Motor phases

6= V-Phase
7= W-Phase
8= V-Phase
9= W-Phase
10= W-Phase

1= U-Phase

3= U-Phase

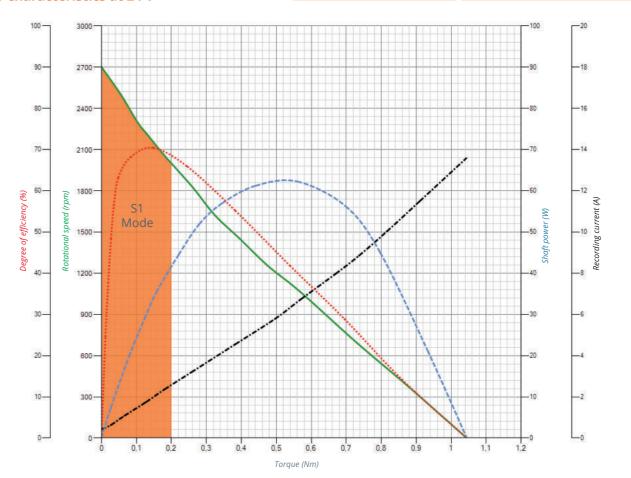
4= U-Phase 5= V-Phase

2 = n.c.

n.c.= please do not connect RM 2.54 / 10 PIN W+P 3491-10

t-Rex 3200-I-44-47 L41 S2 DH	3200.00-3000		
Rated voltage	24 VDC	36 VDC	48 VDC
Rated current	2.6 A	2.6 A	2.8 A
Rated torque	0.2 Nm	0.2 Nm	0.2 Nm
Rated speed	2000 rpm	3187 rpm	4437 rpm
Shaft power (output)	42 W	67 W	93 W
Max. efficiency	70 %	72 %	72 %
dle speed	2702 rpm	4089 rpm	5483 rpm
No-load current	0.4 A	0.4 A	0.4 A
Stall torque	1.0 Nm	1.3 Nm	1.5 Nm
Starting current at idle speed	14 A	18 A	20 A
Torque constant	0.077 Nm/A	0.073 Nm/A	0.073 Nm/A
Speed constant	113 rpm/V	114 rpm/V	114 rpm/V

Motor parameters


1.09 Ohm		
	1.09 Ohm	
98 mH		
125 kg* mm²		
14		
Star		
2		
2 Series		
bidirectional		
	125 kg* mm² 14 Star 2 2 Series	

Note: Max. ambient temperature = 40 °C, controller-specific At the nominal point (TU = 20°C), controller-specific

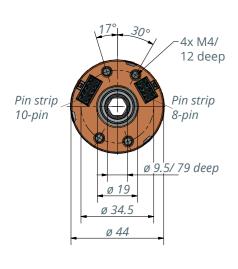
Motor characteristics at 24 V

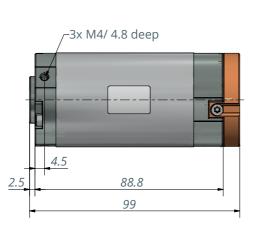
Motor cable approx. 1.5 m

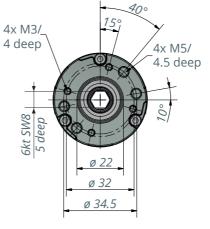
Item number: 3200.53-05

t-Rex 3200 (long version, focus torque)

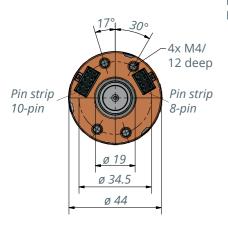
I-44-89-L41 S2

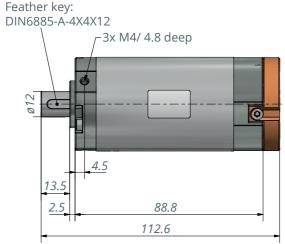

Description

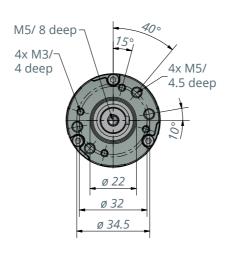

14-pole BLDC motor with high-performance neodymium magnets and three digital Hall sensors to detect the rotor position. The electrical connections are designed as a plug-in system. Additional power electronics are required to operate the motor. The design of the motor with a hollow shaft allows the cables to run through the motor or output on both sides.


Special features

- Designed with focus on max. torque
- Enormous performance density 3 times stronger than motors of
- High overload resistance
- Ideally suited as direct drive, or generator for gearless applications
- Special winding upon request
- Design and manufacture of motor to specified operating point is possible


3200.00-0005 with hollow shaft

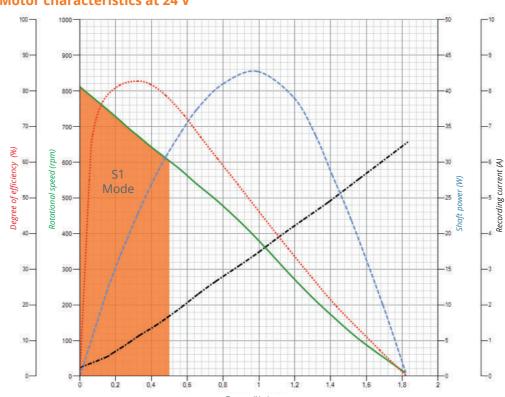




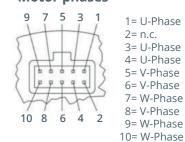
3200.00-0006 with shaft

t-Rex 3200 I-44-89 L41 S2 DH	3200.00-0005 / 3200.00-0006		
Rated voltage	24 VDC	36 VDC	48 VDC
Rated current	1.7A	1.8 A	1.7 A
Rated torque	0.5 Nm	0.5 Nm	0.5 Nm
Rated speed	600 rpm	960 rpm	1347 rpm
Shaft power (output)	31 W	50 W	70 W
Max. efficiency	83 %	83 %	83 %
Idle speed	812 rpm	1221 rpm	1653 rpm
No-load current	0.3 A	0.2 A	0.2 A
Stall torque	1.8 Nm	2.3 Nm	2.9 Nm
Starting current at idle speed	6.6 A	8.7 A	11.2 A
Torque constant	0.279 Nm/A	0.264 Nm/A	0.261 Nm/A
Speed constant	34 rpm/V	34 rpm/V	34 rpm/V

Motor parameters


Terminal resistance (phase to phase)	2.6 Ohm
Terminal inductance (phase to phase)	1.6 mH
Rotor inertia	26.5 kg* mm²
Number of poles	14
Interconnection of the motor	Star
Number of coils per phase	2
Interconnection of coils	2 Series
Direction of rotation	bidirectional

Note: Max. ambient temperature = 40 °C, controller-specific At the nominal point (TU = 20°C), controller-specific


Motor cable approx.1.5 m

Item number: 3200.53-05

Motor characteristics at 24 V

Motor phases

n.c.= please do not connect RM 2.54 / 10 PIN W+P 3491-10

1= U-Phase


6= V-Phase 7= W-Phase

8= V-Phase

9= W-Phase

2 = n.c.3= U-Phase 4= U-Phase 5= V-Phase

Hall-sensors

Socket strip RM 2.54 / 8 PIN W+P 3491-08

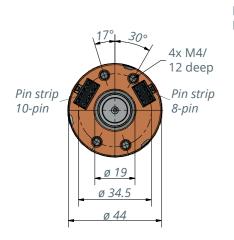
Digital Hall-sensors

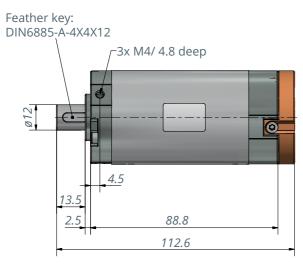
Supply of sensors: Voltage range: 4.5 to 5.5 V DC / Optional: voltage regulator for 5 V, Input current: < 70 mA Output signals of sensors: Differential output, (RS422 standard, datasheet AM26 C31-TI)

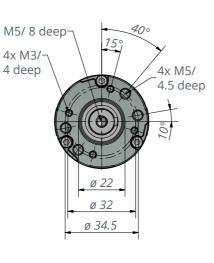
Typical voltage range: 0.2/3.4 V @ 20 mA / Output current: max. 20 mA

Signal structure: The Hall sensors have a 120° phase shift to each other. Due to the 14-pole design the **Signal frequency** is seven times higher than the speed

t-Rex 3200 (long version, focus rotational speed) I-44-89-L12 S2


Description

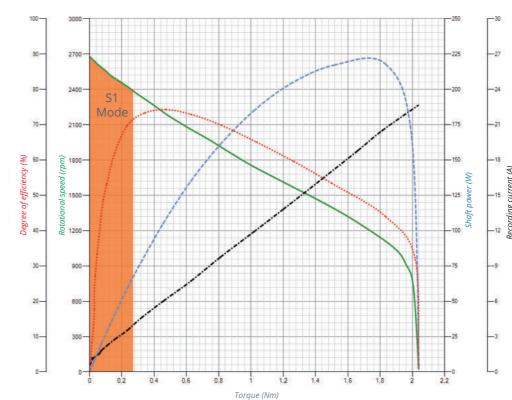

14-pole BLDC motor with high-performance neodymium magnets and three digital Hall sensors to detect the rotor position. The electrical connections are designed as a plug-in system. Additional power electronics are required to operate the motor. Motor design with a hollow shaft is also available upon request. This allows the cables to run through the motor or the implementation of output on both sides.


Special feature

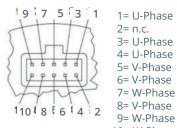
- Designed with focus on rotational speed
- Enormous performance density 3 times stronger than motors of comparable size
- High overload resistance
- Ideally suited as direct drive, or generator for gearless applications
- Special winding upon request
- Design and manufacture of motor to specified operating point is possible

3200.00-0004 with shaft

Motor cable approx. 1.5 m Item number: 3200.53-05

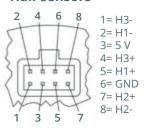

t-Rex 3200 I-44-89 L12 S2 DH	3200.00-0004		
Rated voltage	24 VDC	36 VDC	
Rated current	4.0 A	4.0 A	
Rated torque	0.3 Nm	0.2 Nm	
Rated speed	2418 rpm	3767 rpm	
Shaft power (output)	67 W	79 W	
Max. efficiency	74 %	76 %	
Idle speed	2680 rpm	4053 rpm	
No-load current	0.55 A	0.56 A	
Stall torque	2 Nm	2 Nm	
Starting current at idle speed	22.7 A	21.6 A	
Torque constant	0.09 Nm/A	0.09 Nm/A	
Speed constant	112 rpm/V	113 rpm/V	

Motor parameters


bidirectional	

Note: Max. ambient temperature = 40 °C, controller-specific At the nominal point (TU = 20°C), controller-specific

Motor characteristics at 24 V



Motor phases

10= W-Phase n.c.= please do not connect RM 2.54 / 10 PIN W+P 3491-10

Hall-sensors

Socket strip RM 2.54 / 8 PIN W+P 3491-08

Digital Hall-sensors

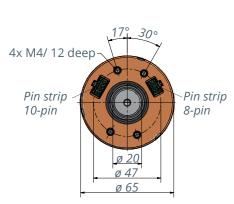
Supply of sensors: Voltage range: 4.5 to 5.5 V DC / Optional: voltage regulator for 5 V, Input current: < 70 mA **Output signals of sensors:** Differential output (RS422 standard, datasheet AM26 C31-TI)

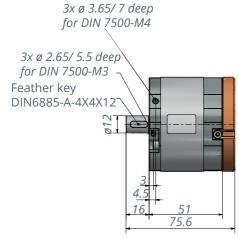
Typical voltage range: 0.2/3.4 V @ 20 mA, Output current: max. 20 mA

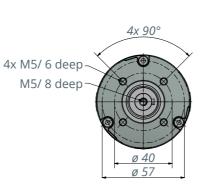
Signal structure: The Hall sensors have a 120° phase shift to each other. Due to the 14-pole design the

Signal frequency is seven times higher than the speed

t-Rex 3206 (short version, focus rotational speed) I-65-51-L36 S2


Description


14-pole BLDC motor with high-performance neodymium magnets and three digital Hall sensors to detect the rotor position. The electrical connections are designed as a plug-in system. Additional power electronics are required to operate the motor. Motor design with a hollow shaft is also available upon request. This allows the cables to run through the motor or the implementation of output on both sides.


Special features

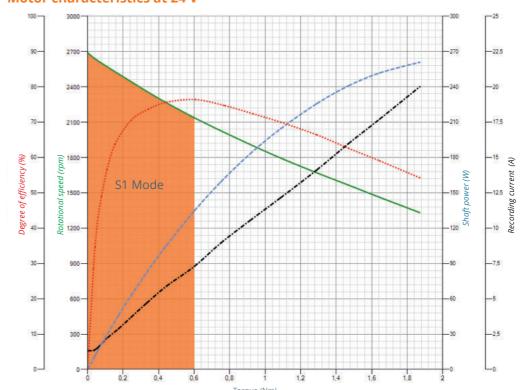
- Designed with focus on rotational speed
- Enormous performance density 3 times stronger than motors of comparable size
- High overload resistance
- Special winding upon request
- Design and manufacture of motor to specified operating point is possible

3206.00-1000 with shaft

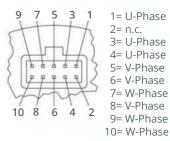
Motor cable approx. 1.5 m

12

Item number: 3200.53-05

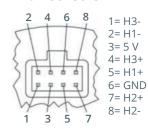

t-Rex 3206 I-65-51 L36 S2 DH	3206.00-1000		
Rated voltage	24 VDC	36 VDC	48 VDC
Rated current	7.3 A	5.6 A	5.6 A
Rated torque	0.6 Nm	0.6 Nm	0.6 Nm
Rated speed	2139 rpm	3208 rpm	4812 rpm
Shaft power (output)	134 W	201 W	301 W
Max. efficiency	76 %	77 %	77 %
Idle speed	2680 rpm	4053 rpm	6054 rpm
No-load current	0.5 A	0.6 A	0.6 A
Stall torque*	1.9 Nm	1.9 Nm	1.9 Nm
Starting current at idle speed	20 A	20 A	20 A
Torque constant	0.094 Nm/A	0.094 Nm/A	0.094 Nm/A
Speed constant	112 rpm/V	112 rpm/V	126 rpm/V

Motor parameters


Terminal resistance (phase to phase)	0.348 Ohm	
Terminal inductance (phase to phase)	0.36 mH	
Rotor inertia	65 kg* mm²	
Number of poles	14	
Interconnection of the motor	Star	
Number of coils per phase	2	
Interconnection of coils	2 Series	
Direction of rotation	bidirectional	
=		

^{*} Is limited by the current carrying capacity of the coils Note: Max. ambient temperature = 40 °C, controller-specific At the nominal point (T_U = 20°C), controller-specific

Motor characteristics at 24 V



Motor phases

n.c.= please do not connect RM 2.54 / 10 PIN W+P 3491-10

Hall-sensors

Socket strip RM 2.54 / 8 PIN W+P 3491-08

Digital Hall-sensors

Supply of sensors: Voltage range: 4.5 to 5.5 V DC / Optional: voltage regulator for 5 V, Input current: < 70 mA **Output signals of sensors:** Differential output, (RS422 standard, datasheet AM26 C31-TI)

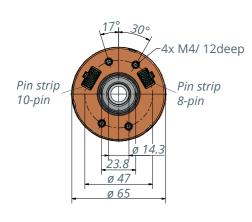
Typical voltage range: 0.2/3.4 V @ 20 mA / Output current: max. 20 mA

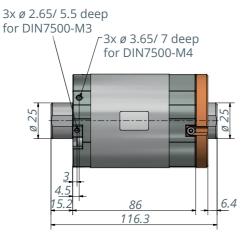
Signal structure: The Hall sensors have a 120° phase shift to each other. Due to the 14-pole design the

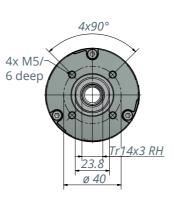
Signal frequency is seven times higher than the speed

t-Rex 3206 (long version, focus torque)

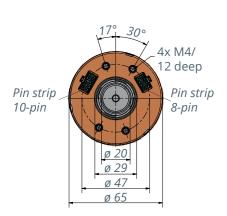
I-65-86-L36 S2

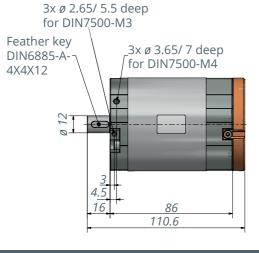

Description


14-pole BLDC motor with high-performance neodymium magnets and three digital Hall sensors to detect the rotor position. The electrical connections are designed as a plug-in system. Additional power electronics are required to operate the motor. The design of the motor with a hollow shaft allows the cables to run through the motor or output on both sides.


Special features

- Designed with focus on max. torque
- Enormous performance density 3 times stronger than motors of comparable size
- High overload resistance
- Ideally suited as direct drive, or generator for gearless applications
- Special winding upon request
- Design and manufacture of motor to specified operating point is possible

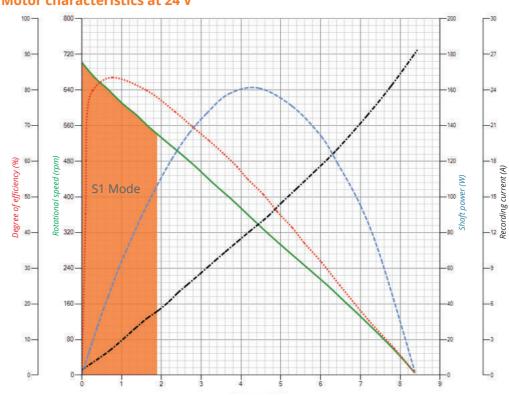

3206.00-0005 with nut



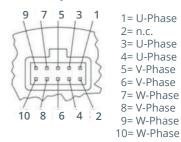
3206.00-0003 with shaft

t-Rex 3206 I-65-86 L36 S2 DH	3206.00-0005/ 3200.00-0003		
Rated voltage	24 VDC	36 VDC	48 VDC
Rated current	5.4 A	5.6 A	5.6 A
Rated torque	1.9 Nm	1.9 Nm	1.9 Nm
Rated speed	535 rpm	865 rpm	1185 rpm
Shaft power (output)	106 W	167 W	232 W
Max. efficiency	84 %	82 %	83 %
Idle speed	702 rpm	1052 rpm	1390 rpm
No-load current	0.45 A	0.43 A	0.43 A
Stall torque	8 Nm	9 Nm	9 Nm
Starting current at idle speed	27 A	28 A	26.5 A
Torque constant	0.308 Nm/A	0.330 Nm/A	0.343 Nm/A
Speed constant	29 rpm/V	29 rpm/V	29 rpm/V

Motor parameters

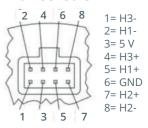

Terminal resistance (phase to phase)	0,121 Ohm	
Terminal inductance (phase to phase)	0.9 mH	
Rotor inertia	104 kg* mm²	
Number of poles	14	
Interconnection of the motor	Star	
Number of coils per phase	2	
Interconnection of coils	2 Series	
Direction of rotation	bidirectional	

Note: Max. ambient temperature = $40 \, ^{\circ}$ C, controller-specific At the nominal point (TU = $20 \, ^{\circ}$ C), controller-specific


Motor cable approx. 1.5 m

Item number: 3200.53-05

Motor characteristics at 24 V



Motor phases

n.c.= please do not connect RM 2.54 / 10 PIN W+P 3491-10

Hall-sensors

Socket strip RM 2.54 / 8 PIN W+P 3491-08

Digital Hall-sensors

Supply of sensors: Voltage range: 4.5 to 5.5 V DC / Optional: voltage regulator for 5 V, Input current: < 70 mA

Output signals of sensors: Differential output, (RS422 standard, datasheet AM26 C31-TI)

Typical voltage range: 0.2/ 3.4 V @ 20 mA / Output current: max. 20 mA

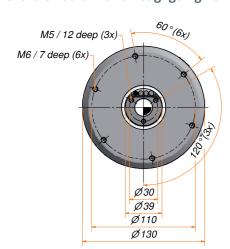
Signal structure: The Hall sensors have a 120° phase shift to each other. Due to the 14-pole design the

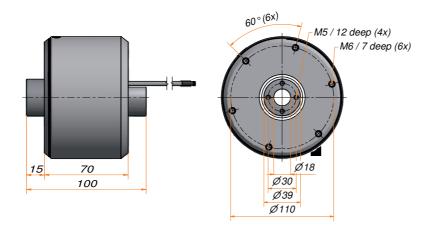
Signal frequency is seven times higher than the speed

i-Rex 3207

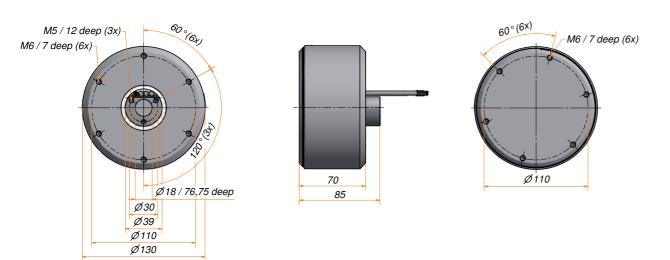
Description

The 32-pole BLDC outrunner motor with its compact design is perfectly suited for a direct drive.

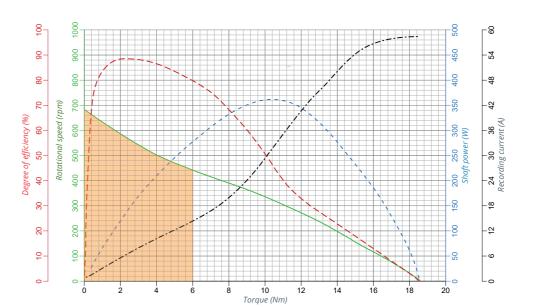

Direct drive - Benefits in a nutshell


- No gearbox no wear
- Much longer service life compared to conventional drive technology with a gear stage
- Excellent running properties with barely perceptible noise level
- Ultra-compact with extremely high power density

The choice is yours - we implement it


- Two analog Hall sensors as standard
 Other encoder types are available on request
- Brake optional
- Combinable with various controllers
- Customized mechanical integration or system connection

3207.48-2001: With throughgoing hollow shaft



3207.48-2010: With hollow shaft

	3207.48-2001 / 3207.48-2010 i-Rex-A-130		
Voltage range	48 VDC	48 VDC	48 VDC
Rated voltage	24 VDC	36 VDC	48 VDC
Rated current	14.5 A	14 A	14 A
Rated torque ¹⁾	6 Nm	6 Nm	6 Nm
Rated speed	440 rpm	670 rpm	880 rpm
Shaft power (output)	270 W	420 W	550 W
Max. efficiency	89 %	89 %	88 %
Idle speed ²⁾	680 rpm	1,000 rpm	1,360 rpm
No-load current ²⁾	1 A	1 A	1 A
Stall torque ²⁾	18.5 Nm	17.9 Nm	17.8 Nm
Starting current at idle speed ²⁾	58 A	39.5 A	33 A
Torque constant³)	0.43 Nm/A	0.43 Nm/A	0.43 Nm/A
Speed constant ³⁾	28.3 rpm/V	27.8 rpm/V	28.3 rpm/V
Terminal resistance (phase to phase)	0.12 Ohm		
Terminal inductance	0.88 mH		
Rotor inertia	1,713 kg* mm²		
Number of poles	32		
Interconnection of the motor	H36S4		
Encoder type	2x Halls analog		

- 1) At the nominal point (TU = 20°C), controller-specific
- 2) Max. ambient temperature = 40 °C, controller-specific
- 3) Radial and axial forces apply to the nominal service life
- L10h = 20,000h according to DIN ISO 281

Sensor connection:

1 Sensorsignal cos+ 2 Sensorsignal cos-3 5 V brown-white orange 4 Sensorsignal sin+ green

4 Sensorsignal sin+ 5 Sensorsignal sin-

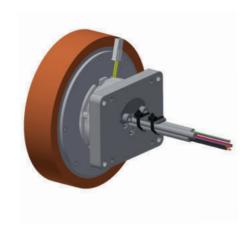
in- brown orange-white

Phase connection:

U = red 4 mm²
V = yellow 4mm²
W = black 4 mm²

Analoge Hall-sensors

Supply of sensors: Voltage range: 5 V DC Input current: < 70 mA


Output signals of sensors:

Differential output Typical voltage range: 1 ± 0.2 V DC Output current: Max. 20 mA

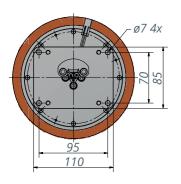
Signal structure: The hall sensors have a 90° phase shift to each other. Due to the 32-pole design the Signal frequency is 16 times higher than the speed.

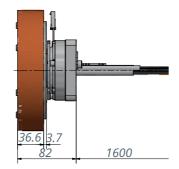
16 3207.75-02/20230530 www.ketterer.de

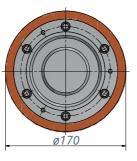
i-Wheel 3213.00-1XXX

Direct drive - Benefits in a nutshell

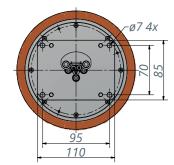
- No gearbox no wear
- Much longer service life compared to conventional drive technology with a gear stage
- Excellent running properties with barely perceptible noise level
- Safe operation due to permanent temperature monitoring
- Ultra-compact with extremely high power density
- Easy replacement of the the wheel coating on site possible thanks to the patented Ketterer solution

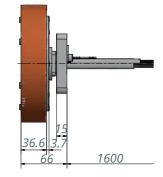

Safety first

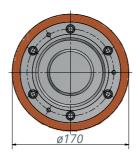

- Rotational control system using diverse redundancy
- **PL-d** safety level achievable with suitable controller
- Safe production processes, as there are no risks of contamination from gear oils and greases (no gearbox)


The choice is yours - we implement it

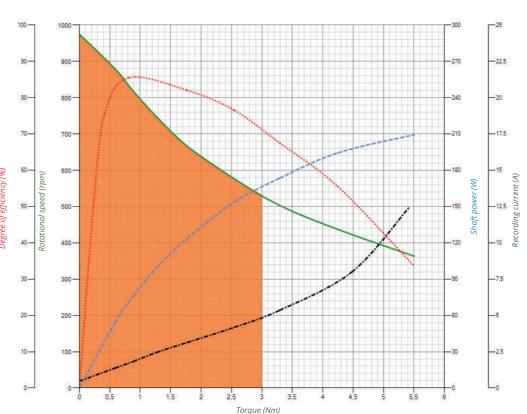
- Encoder optional: BiSS, SSI, TTL incremental (various resolutions)
- Brake optional: Permanent magnetic brake or spring-operated brake
- Can be combined with various controllers
- Customer-specific mechanical integration and system connection


3213.00-1XX1 with brake





3213.00-1XX2 without brake



3213.00-1XXX i-Wheel-A-170 48 VDC Rated voltage 5 A Rated current1) Rated torque¹⁾ 3 Nm Rated speed¹⁾ 530 rpm Max. speed 17 km/h at rated torque¹⁾ Shaft power (output)1) 165 W 975 rpm Idle running speed2) No-load current2) 0.5 A up to 31 km/h Achievable max. speed2) Max. efficiency2) 86 % Standstill torque²⁾ 5.4 Nm Starting current at idle speed2) 12,4 A Torque constant²⁾ 0.6 Nm/A Speed constant²⁾ 11 rpm/V Terminal resistance (phase to phase) 0.65 Ohm

1) Max. ambient temperature = 40 °C, controller-specific	
2) At the nominal point (TU = 20°C), controller-specific	

Terminal inductance

³⁾ Radial and axial forces apply to the nominal service life L10h = 20,000h according to DIN ISO 281

3.7 mH

i-Wheel-A-170 Rotor inertia 2,900 kg*mm² Max. radial axle load F³) 800 N Max. axial axle load F³) 200 N Number of magnets poles 32 Interconnection of the motor L63S4

Digital Halls +

TTL magnetic

incremental ABZ

4.096 cpr

Blickle Besthane

92 ±3 Shore A

3213.00-1XXX

Encoder type in standard

Encoder resolution

Material of the coating

Braking torque	5 Nm
Power supply brake	24 VDC / 17,6 W
Power consumption brake	7 W through PWM Power reduction
Weight incl. brake	4,5 kg

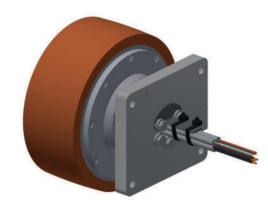
Brake:
1 +24 V PIN 1
2 GND PIN 2

Motor phases:
Alpahwire 6716 AWG16

U = red
V = black
W = yellow

Hall sensors: igus CF240.PUR.01.08 (8x0,14)C

1 +5 V red
2 GND blue
3 H1 white
4 H2 brown
5 H3 green
6 PT1000 gray
7 PT1000 pink


Hall output signal: 3 square-wave signals The hall signals have a phase shift of 120° to each other. Power supply: 5V ± 5% Input current: typ, 40 mA

1	+5 V	red
2	GND	blue
2	A	gray
	A-	pink
4 5	В	green
6	B-	yellow
7	Z	white
8	Z-	brown
Diffo	rontial oncodo	r output signal:

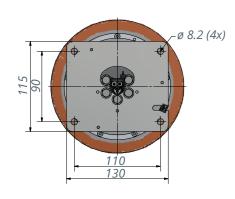
Power supply: 5V ± 5% Input current: typ. 35 mA

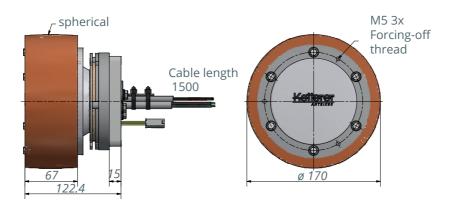
3213.00-1XXX.75-02/20230418 www.ketterer.de

i-Wheel 3213.00-2XXX

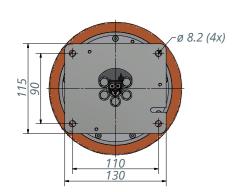
Direct drive - Benefits in a nutshell

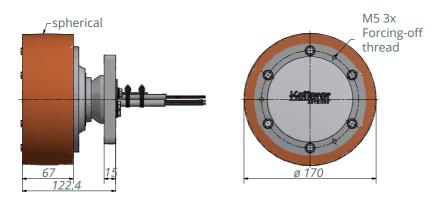
- No gearbox no wear
- Much longer service life compared to conventional drive technology with a gear stage
- Excellent running properties with barely perceptible noise level
- Safe operation due to permanent temperature monitoring
- Ultra-compact with extremely high power density
- Easy replacement of the the wheel coating on site possible thanks to the patented Ketterer solution


Safety first


- Rotational control system using diverse redundancy
- PL-d safety level achievable with suitable controller
- Safe production processes, as there are no risks of contamination from gear oils and greases (no gearbox)

The choice is yours - we implement it


- Encoder optional: BiSS, SSI, TTL incremental (various resolutions)
- Brake optional: Spring-operated brake
- Can be combined with various controllers
- Customer-specific mechanical integration and system connection


3213.00-2XX1 with brake

3213.00-2XX2 without brake

3213.00-2XXX i-Wheel-A-170-123

I-WIICEI-A-170-123	
Rated voltage	48 VDC
Rated current ¹⁾	4.5 A
Rated torque ¹⁾	5 Nm
Rated speed ¹⁾	316 rpm
Max. speed at rated torque ¹⁾	10 km/h
Shaft power (output) ¹⁾	165 W
Idle running speed ²⁾	450 rpm
No-load current ²⁾	0.3 A
Achievable max. speed ²⁾	up to 14 km/h
Max. efficiency ²⁾	82 %
Standstill torque ²⁾	20 Nm
Starting current at idle speed ²⁾	32 A
Torque constant ²⁾	1.25 Nm/A
Speed constant ²⁾	9.4 rpm/V
Terminal resistance (phase to phase)	1.05 Ohm
Terminal inductance	7 mH

1) Max. ambient temperature = 40 °C, controller-specific	
2) At the nominal point (TU = 20°C), controller-specific	

³⁾ Radial and axial forces apply to the nominal service life L10h = 20,000h according to DIN ISO 281

3213.00- <mark>2</mark> XXX i-Wheel-A-170-123			
Rotor inertia	14,500 kg*mm ²		
Max. radial axle load F ³⁾	2,500 N		
Max. axial axle load F ³⁾	1,250 N		
Number of magnets poles	32		
Interconnection of the motor	L63S4		
Encoder type in standard	Digital Halls + TTL magnetic incremental ABZ		
Encoder resolution	4,096 cpr		
Material of the coating	Blickle Besthane 92 ±3 Shore A		

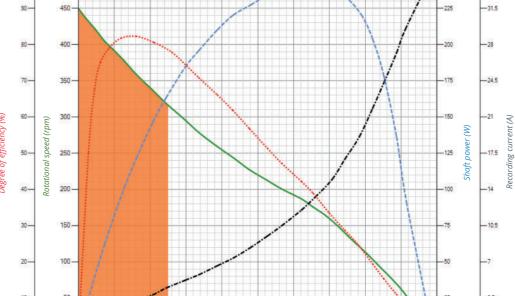
Braking torque	16 Nm	
Power supply brake	24 VDC / 19.4 W	
Power consumption brake	7 W through PWM Power reduction	
Weight incl. brake	10,3 kg	

Brake: 1 +24 V PIN1 2 GND PIN2

Motor phases: igus CF77.UL.25.04.D (4G2.5)

igus CF77.UL.25.04.D (4G2.5)

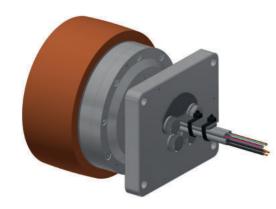
U = 1
V = 2
W = 3


The PE conductor is not connected

Hall sensors: igus CF240.PUR.01.08 (8x0.14)C			0.14)C
	1 2 3	+5 V GND H1	red blue white
	4	H2	brown

Output signal: 3 square-wave signals The hall signals have a phase shift of 120° to each other. Power supply: 5V ± 5% Input current: typ. 40 mA

Encoder: igus CF240.PUR.01.08 (8x0.14)C				
1 2	+5 V GND	red blue		
3	A	gray		
4	A-	pink		
5	В	green		
6	B-	yellow		
7	Z	white		


Differential output signal: 3 square-wave signals (RS422) Channel A, B (90° phase shift) and Index Z Accuracy: ± 0.5° Power supply: 5V ± 5% Input current: typ. 35 mA

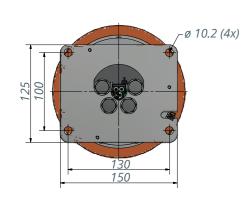
Torque (Nm)

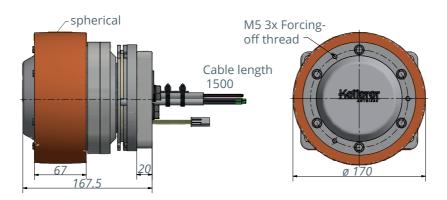
3213.00-2XXX .75-02/20221012 www.ketterer.de

i-Wheel 3213.00-3XXX

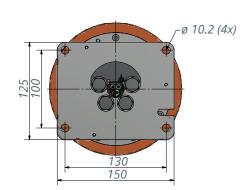
Direct drive - Benefits in a nutshell

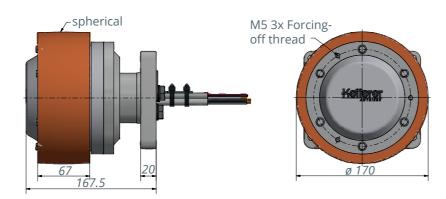
- No gearbox no wear
- Much longer service life compared to conventional drive technology with a gear stage
- Excellent running properties with barely perceptible noise level
- Safe operation due to permanent temperature monitoring
- Ultra-compact with extremely high power density
- Easy replacement of the the wheel coating on site possible thanks to the patented Ketterer solution


Safety first


- Rotational control system using diverse redundancy
- **PL-d** safety level achievable with suitable controller
- Safe production processes, as there are no risks of contamination from gear oils and greases (no gearbox)

The choice is yours - we implement it


- Encoder optional: BiSS, SSI, TTL incremental (various resolutions)
- Brake optional: Spring-operated brake
- Can be combined with various controllers
- Customer-specific mechanical integration and system connection


3213.00-3XX1 with brake

3213.00-3XX2 without brake

3213.00-3XXX i-Wheel-A-170-168

48 VDC

Rated voltage

nated voitage	40 400
Rated current¹)	4.7 A
Rated torque ¹⁾	10 Nm
Rated speed ¹⁾	154 rpm
Max. speed at rated torque ¹⁾	5 km/h
Shaft power (output) ¹⁾	161 W
Idle running speed ²⁾	225 rpm
No-load current ²⁾	0.4 A
Achievable max. speed ²⁾	up to 7 km/h
Max. efficiency ²⁾	78 %
Standstill torque ²⁾	34 Nm
Starting current at idle speed ²⁾	29 A
Torque constant ²⁾	2.1 Nm/A
Speed constant ²⁾	4.7 rpm/V
Terminal resistance (phase to phase)	1.75 Ohm
Terminal inductance	15 mH

1) Max.	ambient	temperature	= 40 °	C, contro	oller-specific

3213.00-3XXX

i-Wheel-A-170-168	
Rotor inertia	26,850 kg*mm ²
Max. radial axle load F ³⁾	7,500 N
Max. axial axle load F ³⁾	2,500 N
Number of magnets poles	32
Interconnection of the motor	L62S4
Encoder type in standard	Digital Halls + TTL magnetic incremental ABZ
Encoder resolution	4,096 crp
Material of the coating	Blickle Bestha- ne 92 ±3 Shore A

Braking torque	30 Nm
Power supply brake	24 VDC / 21.5 W
Power consumption brake	7 W through PWM Power reduction
Weight incl. brake	17.6 kg

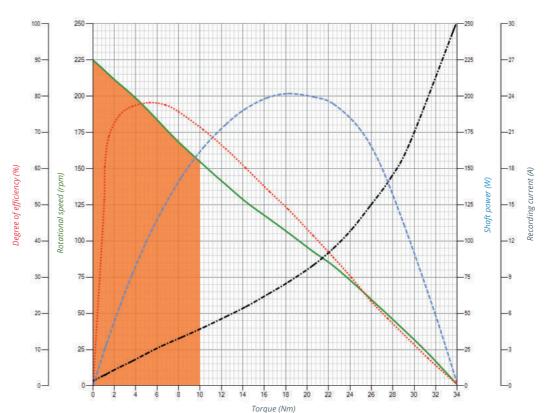
Motor phases: igus CF77.UL.25.04.D (4G2.5)

U = 1 V = 2 W = 3

The PE conductor is not connected

0		,-
1	+5 V	red
2	GND	blue
3	H1	white
4	H2	brown
5	H3	green

Output signal: 3 square-wave signals The hall signals have a phase shift of 120° to each other. Power supply: 5V ± 5% Input current: typ. 40 mA


Encoder:

Differential output signal: 3 square-wave signals (RS422) Channel A, B (90° phase shift) and Accuracy: ± 0.5° Power supply: 5V ± 5% Input current: typ. 35 mA

1)	Max.	ambient	temperature	= 40 °	C, controller-specific
21	$\Lambda + + h$	a namina	I noint (TII -	20001	controller checific

2) At the nominal point (TU = 20°C), controller-specific
 3) Radial and axial forces apply to the nominal service life L10h = 20,000h according to DIN ISO 281

3213.00-3XXX.75-02/20221115 www.ketterer.de

i-Wheel Clever 3213.00-21XX

Wheel hub drive with fully integrated Circulo 9 Motion Controller from Synapticon - a compact, intelligent drive system with minimal integration expenses.

Direct drive: Advantages in a nutshell

- No gearbox no wear
- Much longer service life compared to conventional drive technology with a gear stage
- Excellent running properties with barely perceptible noise level
- Safer operation through permanent temperature monitoring
- Ultra-compact with extremely high power density
- Easy replacement of wheel coating on site possible thanks to patented Ketterer solution

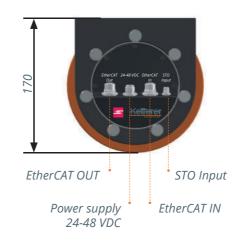
Overall System: Intelligent - Safe - Ultracompact

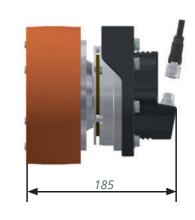
- Optimum Performance Scaling: Available in all three Ketterer standard performance classes of the i-Wheel family on request
- Highest performance in drive control in the smallest installation space
- Easy to Use: Seamless Integration in a few easy steps
- Plug & Play: Standard plug & standard cable can be used
- High speed EtherCAT interface, low latency, negligible Jitter
- Over 10 certified safety functions (SIL2, Pl-d)
 SIL 3, PL-e on request
- High Resolution Absolute Encoder
- User-friendly Synapticon parameterization and tuning software
- Model predictive field-oriented control for high efficiency, maximum bandwidth
- Optional emergency holding brake with energy saving mode
- Available in the near future: Circulo 9 with Safe Motion Module

3213.00- <mark>21</mark> XX i-WheelC-A-170-185	
Rated voltage	48 VDC
Rated current¹)	4.5 A
Rated torque ¹⁾	5 Nm
Rated speed ¹⁾	316 rpm
Max. speed at rated torque ¹⁾	10 km/h
Shaft power (output) ¹⁾	165 W
Idle running speed ²⁾	450 rpm
No-load current ²⁾	0.3 A
Max. efficiency ²⁾	82 %
Standstill torque ²⁾	19.7 Nm
Starting current at idle speed ²⁾	35 A
Max. radial axle load F ³⁾	2,500 N
Max. axial axle load F ³⁾	1,250 N
Encoder resolution	262,144 cpr
Material of the coating	PU-Rad: 92° ±3° Shore A
Braking torque of the emergency holding brake	16 Nm

- 1) Max. ambient temperature = 40 °C, controller-specific
- 2) At the nominal point (TU = 20°C), controller-specific
- 3) Radial and axial forces apply to the nominal service life L10h = 20,000h according to DIN ISO 281

Circulo 9 Motion Controller by Synapticon		
ons	EtherCAT,	
	the second secon	


Communications interface	EtherCAT, FSoE (FailSafe over EtherCAT)
Rated voltage range	24 - 48 V DC
Max. voltage	60 V DC
Continuous phase current RMS	20 A
Max. efficiency	99 %
Hardware Protection	Overcurrent, overvoltage, undervoltage, PW deadtime, overtemperature, PWM shoot through
Standard Safety Functions	STO/SBC
Safe Motion Modul	FSoE, STO, SBC, SS1/2, SOS, SMS, 4xSLS, Safe Process Data (position, velocity)
-	


Certified Safety Functions

STO – SAFE TORQUE OFF
SBC – SAFE BRAKE CONTROL
SBT – SAFE BRAKE TEST*
SS1 – SAFE STOP 1
SS2 – SAFE STOP 2
SLS – SAFELY LIMITED SPEED
SLP – SAFELY LIMITED TORQUE*
SAFE VELOCITY PROCESS DATA
SAFE POSITION PROCESS DATA
SAFE TORQUE PROCESS DATA
SAFE DIGITAL GPIO AND ANALOG
INPUTS

*The functions must be implemented in the safety controller using secure process data

i-Wheel Clever 3213 with integrated Circulo 9 Motion Controller by Synapticon

3213.00-21XX .75-02/20240115 www.ketterer.de

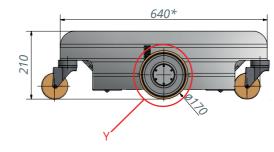
Ket-Rob - Drive platform for AGV/AGC

DS

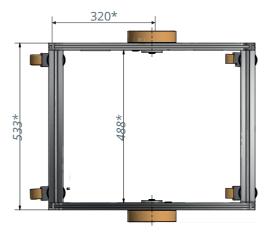
Description

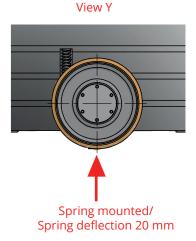
Tailored to the requirements of autonomous robot technology, Ketterer offers a modular drive platform for **A**utomated **G**uided **V**ehicle systems or - **C**arts (**AGV/AGC**).

All components are designed for simple integration.


Your benefits

- Complete basic drive module for Automated Guided Vehicle systems or - Carts (AGV/AGC)
- Dimensioning of the drive platform according to individual requirements
- Gearless BLDC wheel hub drives with a durable Vulkollan or solid rubber wheel
- Noise-reduced direct drive with spring suspension (spring travel 20 mm). Therefore driving on uneven surfaces is not a problem
- Large design scope of the vehicle structure due to very low installation depth of the wheel hub drives
- Very quiet in operation
- Maintenance-free, therefore no maintenance and service needed
- Load platform height adjustment and load platform in accordance with customer-specific requirements optionally possible
- Customer-specific adaptions of the drives or systems are possible

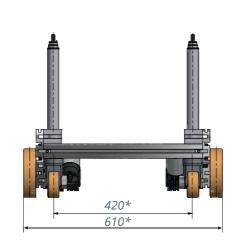

Technical data

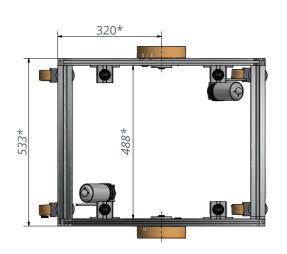

	Ket -Rob
Power supply	24 V- 48 V
Utilize speed	7 km/ h
Acceleration	0.5 m/s²
Max. Engine power (per drive unit)	210 W
Load capacity	100 kg
Starting torque (per drive unit)	6 Nm
Braking torque (per brake)	9 Nm
Power supply brake (per drive unit)	24 V/ 18 W
Driving direction	forward and backward
Ground clearance	30 mm
Max. incline	4 %
Protection class	IP 20
Operating temperature	5 to 40 °C (Humidity 10-90 % non-condensing)

Basis: Without height adjustment for transport platform

* Dimensions can be customized

Ket Rob consists in the standard version of:

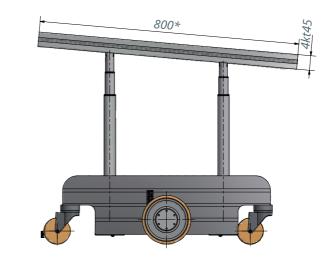

- 2 x BLDC wheel hub drives with encoder and brake (without regulation/control)
- 4 x load bearing steering wheels
- Frame


Additional options:

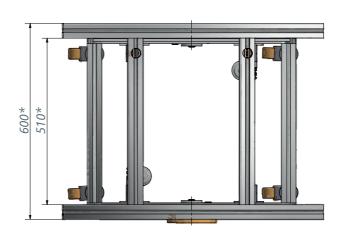
- Height adjustment for transport platform
- Transport platform

100000.75-02/20220930 www.ketterer.de

Ground clearance 30 mm 1020* Extended *040 *040


* Dimensions can be customized

Technical notes


- For the linear height adjustment many Ketterer standard solutions conceivable: e.g. 3120, 4643, 4114, Information about these products can be found at www.ketterer-drives.com/products
- Customer-specific adaptations are possible

Additional option: Transport platform

* Dimensions can be customized

Orientation aid

In the era of Industry 4.0 and Big Data, it is unimaginable to do without Automated Guided Vehicle Systems (AGVS) and Automated Guided Vehicles (AGV).

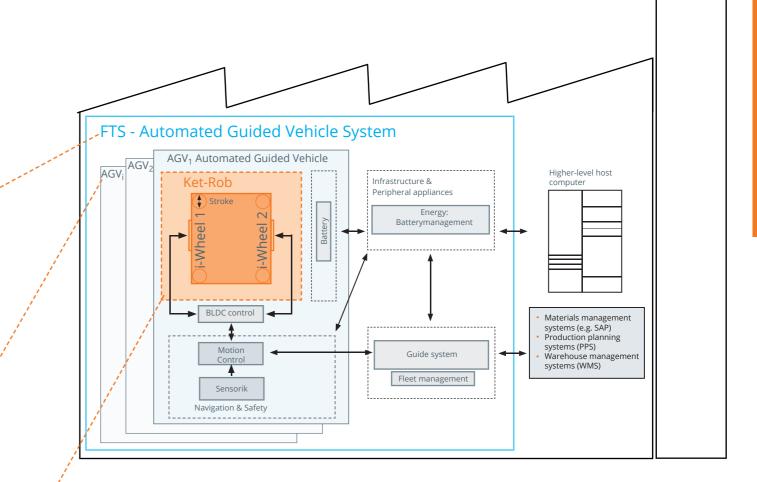
They have become a component of modern intralogistics solutions.

Automated Guided Vehicle Systems (AGVS)

Automated Guided Vehicle Systems are floor-bound systems that are used in-plant, inside and/or outside of buildings. They essentially consist of one or more automatically controlled vehicles, guided without contact, with their own travel drive and, if necessary, of

- a master controller,
- a device for location determination and position detection
- a device for data transmission and
- infrastructural and peripheral devices

The main task of an AGVS is the automatic transport of materials. In the broader sense, AGVSs also include systems that are used for service tasks such as handling, monitoring, cleaning, mobile information and guidance – including in areas accessible to the general public.


VDI guideline 2510

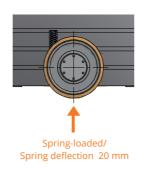
Automated Guided Vehicles (AGVs)

Automated Guided Vehicles (AGVs) are floor-bound conveyances with their own travel drive, which are automatically controlled and guided without contact.

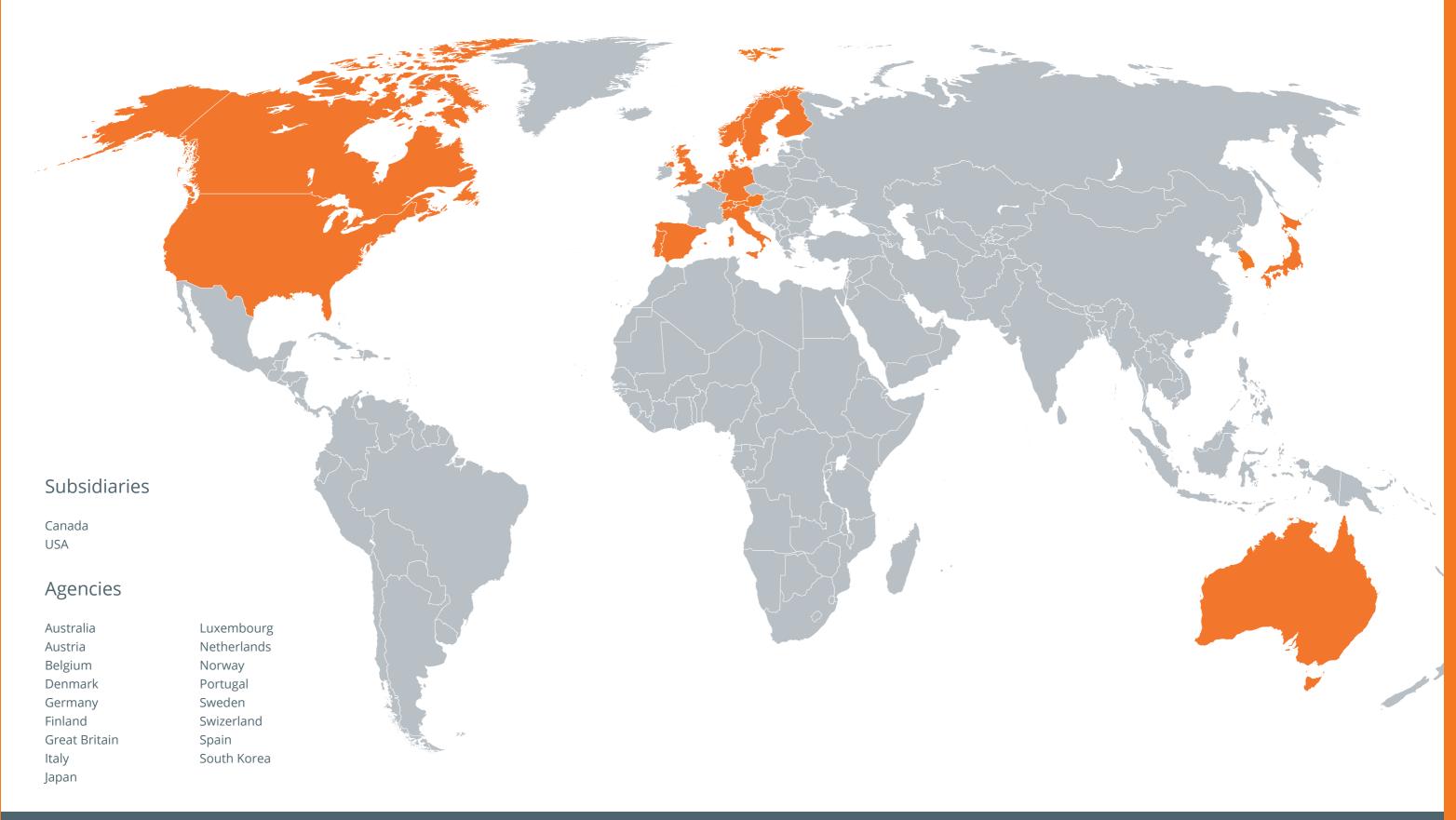
They are used for the transport of materials, i.e. for pulling and/or carrying conveyed goods with active or passive load handling devices. This guideline deals with vehicles with wheel drives. Rail-guided vehicles, air-cushion vehicles and walking machines are excluded.

VDI guideline 2510

_ Ket-Rob – more time for essentials


Ketterer's drive platform "Ket-Rob" enables the project manager, in the development of an AGV / AGVS, to concentrate on the complex part of the work, i.e. the proprietary application and idea, including the programming and coordination of the necessary control systems.

If the controller is to be evaluated, the Ketterer platform enables a prototype for an AGV / AGVS to be created and tested very quickly. The time saved can be used in the development of system variants in order to find the optimum solution for the in-house AGV / AGVS.



0 100000.75-02/20220930 www.ketterer.de

USED AROUND THE WORLD

32

B. Ketterer Söhne GmbH & Co. KG Bahnhofstrasse 20 78120 Furtwangen Germany

Phone: +49 7723 6569-10 Mail: info@ketterer.de

Web: www.ketterer-drives.com

© Ketterer Drives, 15.01.2024